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Abstract

The success of agent-oriented concepts in various ap-
plication domains, in particular in manufacturing control,
creates the need for an agent-oriented analysis, design, and
programming methodology. This paper presents a program-
ming method that covers one step of the necessary methodol-
ogy. Given a specification of the tasks to be performed, the
method allows to program the corresponding agent in three
steps: (i) programming of the individual tasks; (ii) synchro-
nization of tasks to avoid concurrency problems; and (iii)
specification of script execution on a single processor ma-
chine. The programming method was specifically designed
for implementing manufacturing control agents and com-
plies with the industrial requirements stated in this paper.

1 Introduction

Multi-agent systems has become the key information
technology for the next generation of manufacturing control.
Motivated by the inability of existing manufacturing systems
(i) to deal with the evolution of products and (ii) to maintain
a satisfying performance outside normal operation [13],
manufacturing research and industry has proposed holonic
manufacturing systems (HMS). This new manufacturing par-
adigm is supposed to overcome these deficits with the help
of concepts like autonomy, cooperation, and self-similarity
[14]. In a holonic manufacturing system, autonomous and
self-reliant manufacturing units, called holons, cooperate in
order to achieve the overall manufacturing goals. A system
of holons is called a holarchy and may itself be a holon that
acts as an autonomous and cooperative unit in another holar-
chy [7]. Both principles enable holonic manufacturing to
flexibly organize and control the whole manufacturing pro-
cess of a company.

Even though at first glance the ideas of HMS seem identi-
cal to those of multi-agent applications to manufacturing (cf.
e.g. [4,10,12,17]), a thorough comparison reveals significant
differences: HMS is an organizing principle for structuring

and controlling manufacturing processes, whereas multi-
agent systems is a software technology for realizing the in-
formation processing of a holonic manufacturing system [6].
That is, multi-agent systems is an enabling technology for
holonic manufacturing. This thesis is supported by a compar-
ison of the terms agent and holon: A holon contains the infor-
mation processing and the physical processing part of a
manufacturing entity, while an agent is some kind of software
process. Even though the physical processing part is not man-
datory for a holon, and sometimes the term agent is also used
for physical entities, this characterization of agents and ho-
lons is fairly common.

The success of multi-agent concepts in the manufacturing
domain creates new challenges for the technology. Apart
from the (problem-solving) functionality, an industrially
used manufacturing system must also satisfy properties such
as reliability, fault-tolerance, maintainability, transparency,
etc. But above all, for multi-agent technology to be widely
used and accepted in industry, non-researchers must be en-
abled to apply agent-oriented techniques just as any other en-
gineering method. This implies in particular that engineers
are enabled to design and program an agent-oriented control
system in a straight-forward and efficient manner. Thus, the
success of multi-agent systems creates ultimately the need
for an agent-oriented analysis, design, and programming
methodology.

This paper makes a first step towards an agent-oriented
methodology for manufacturing control of the shop floor. It
presents a programming method that allows to program con-
trol agents once a specification of each agent has been de-
rived in a previous design step. The programming method
maps the control agent onto a computational architecture
whose implementation is transparent to the programmer.

The method presented in this paper is the result of two re-
search projects at Daimler-Benz in which agent-oriented
techniques were applied to car manufacturing. The develop-
ment of the control systems in cooperation with the plants re-
vealed the need for a methodology that can be applied by en-
gineers without a research background in agent technology.



The paper is organized as follows. The next section dis-
cusses general industrial requirements on the development of
agent-oriented systems for manufacturing control. Section 3
presents the programming method for control agents in three
steps: (i) individual programming of control tasks, (ii) syn-
chronization of tasks to avoid concurrency problems, and
(iii)  specification of script execution on a single-processor
machine. The programming method is evaluated with respect
to the industrial requirements. Finally, previous work related
to the aim of this paper is discussed before the paper is con-
cluded.

2 Industrial Requirements

A multi-agent manufacturing control system usually re-
quires the use of special reasoning and coordination tech-
niques. Depending on the manufacturing goals and the type
of manufacturing process, different kinds of control architec-
tures and/or strategies might be necessary in order to opti-
mally control the manufacturing process (cf. e.g. [1,2,4]).
However, despite the special needs of a particular manufac-
turing application, any industrial control system must meet
general requirements. These requirements cover functional
and software-engineering aspects of the control system.

2.1 Functional Requirements

Manufacturing control systems are large, complex arte-
facts which are designed to perform a clearly-defined task in
a well-structured, standardized environment. Even though
manufacturing processes experience a lot of changes and dis-
turbances, the degree of uncertainty and unpredictably is not
comparable to that of space, traffic, or service applications.
As a consequence, manufacturing applications require less
mental and social deliberation than typical applications of
multi-agent systems. This is particularly true for mental cate-
gories such as desires, intentions, or joint intentions, includ-
ing their associated reasoning. Their use is possible, but not
appropriate for most manufacturing control tasks.

Moreover, all manufacturing agents cooperate in order to
achieve the overall manufacturing goals. With respect to
these goals, an agent never deliberatively rejects the coopera-
tion with another agent. Only when the requested actions are
impossible or strongly disadvantageous to the manufacturing
process, it refuses their execution. In this sense, the manufac-
turing agents are semi-autonomous. This leads us to the first
requirement.

Requirement I: Manufacturing control systems re-
quire semi-autonomous agents. The agents must rea-
son about the behavior of the manufacturing system,

but not about their own mental attitudes or that of
other control units.

This requirement does not deny the creation of mental
categories inside an agent, like intentions. It only states that
the agent does not have to reason about them. Furthermore,
this requirement may be invalid for virtual enterprises which
are temporary joint ventures of autonomous companies.

The second requirement is concerned with the type of be-
havior a control unit must exhibit. Manufacturing control
units are continuously faced with a high rate of repeated
events that are known, but unpredictable. This flow of events
must be handled timely and efficiently. The handling of the
events can consequently be fixed beforehand with the help of
routines, while only the initiation and execution of routines
must be performed on-line. The set of events and their pattern
of occurrence changes only slowly over time. These long-
term changes are mainly caused by major product and pro-
duction technology changes.

Requirement II: Manufacturing control units mostly
require a routine-based behavior that is both timely
and efficient. This behavior should be either configur-
able or self-adaptive.

This requirement does not ban explicit reasoning such as
planning or scheduling from manufacturing control, but em-
phasizes that for most control units routine-based behavior is
sufficient (cf. [1,2] for examples of explicit reasoning in-
cluded in autonomous and cooperative manufacturing sys-
tems). Self-adaptiveness, on the other hand, may require ex-
plicit reasoning about the behavior of an agent. This
reasoning, however, is not concerned with the agent’s reac-
tion to a specific event, but supervises the behavior over time.

2.2 Software-Engineering Requirements

Apart from the functional requirements, any control sys-
tem that is supposed to be used in a productive manufacturing
environment must meet general industrial standards. These
standards specify, among others, requirements for reliability,
fault-tolerance, diagnosibility, and maintainability. In partic-
ular, control systems must reach a degree of reliability that
guarantees continuous operation. This is equally true for the
control software. Product reliability, however, is only
achievable if the software development process is performed
in an engineering-like manner, instead of an ad hoc fashion.

Moreover, as already argued in the introduction, the wide-
spread application of agent-oriented techniques to industrial
control requires that the software development process is
supported by a methodology. This methodology should en-
able skilled engineers to develop the agent-oriented control
system in a straight-forward and efficient manner.

A method for programming an agent should therefore
meet at least the following minimal requirements:



Requirement III:  Programming methods must pro-
vide encapsulation of data and procedures.

Requirement IV: Control programs must have a clear
semantics. Additionally, the behavior of an agent
should be completely specified by its control pro-
gram.

Requirement V: A programming method or method-
ology should lead straight-forward from the control
task to the agent program.

Agent-oriented programming methods must fulfill at least
the above requirements in order to be applicable to industrial
control problems.

3 Agent Programming

Manufacturing applications require a design methodol-
ogy that derives the architecture and algorithms of the control
system in a top-down approach from the overall manufactur-
ing goals. First of all, during an analysis of the overall goals
and the process characteristics, the methodology identifies
global control strategies which optimally run the manufac-
turing process. In a second step, the control strategies are de-
composed into single control tasks which can be executed lo-
cally with the partial knowledge of the shop floor. These
control tasks are then grouped and assigned to the agent of a
manufacturing unit. In this paper, we assume to have accom-
plished these steps and are now faced with the task of design-
ing and implementing each individual agent as a control
component. (Methodologies for analyzing and designing
multi-agent systems and deriving a specification for the
agents of the system have been proposed in [4,8,15,17].)

Given the control tasks one agent has to perform, an
executable program is designed for each task. Because of the
inherent concurrency of control strategies, the execution of

tasks is synchronized in order to avoid data and action con-
flicts. Finally, the concurrent execution of tasks is mapped
onto a single-processor machine. The result of these three
steps is the operational specification of a control agent which
solves the control tasks specified.

The following three subsections outline this agent-ori-
ented approach to the programming of manufacturing con-
trol units. Starting from the individual tasks of an agent, they
show how the corresponding scripts are programmed (sub-
section 3.1), synchronized (subsection 3.2), and assembled
into a single-processor program (subsection 3.3).  The final
subsection then evaluates the programming approach with
respect to the industrial requirements stated in section 2.

3.1 Task-Oriented Programming

Control tasks are implemented with the help of scripts.
Scripts are procedures with parameters, local variables, and
a list of commands, just as in most imperative or object-ori-
ented programming languages. Local variables contain com-
mon data structures (number, strings, lists, etc.) and com-
mands allow conditional execution (if-then-else), loops
(for/while), and the invocation of other scripts.

Scripts and global variables are grouped into modules.
Each module provides a certain functionality, like e.g. sensor
interpretation, protocol management, or scheduling. A set of
modules finally constitutes an agent. A typical functional
agent architecture for manufacturing control is depicted in
figure 1.

Modules in turn are organized in a module hierarchy
which defines a non-reflexive, transitive subsumption rela-
tion between modules. An example hierarchy is given in fig-
ure 2. A script can call (i) any script of the same module, (ii)
any script declared as restricted in super-ordinate modules,
and (iii) any script declared as public. An analogous rule ap-
plies to the use of global variables.

Figure 1: Functional agent architecture.
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Figure 2: An example module hierarchy.
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Scripts are invoked by events. If an event occurs, it is
mapped to a script and the arguments of the event are passed
as parameters to the script. The mapping is defined for each
module and events are created with respect to a module. The
events to be mapped can be external (coming from basic sen-
sor or communication facilities) or internal (created by
scripts). The activation of scripts (within the agent) is usually
initiated by external events. The invoked scripts then either
call other scripts or create internal events (cf. fig. 3). Excep-
tions are only agent initialization and timing events which
both may start activation.

Figure 3: Script invocation.
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3.2 Concurrency of Tasks

Control applications always require concurrent task exe-
cution. Drilling machines for example load and unload work
pieces in parallel in order to maximize throughput. Concur-
rent execution, however, may create undesirable effects that
either result in inconsistent data or critical control behavior.
In general, conflicts between tasks may arise on two levels:
(i) concerning data, and (ii) between scripts.

Data conflicts occur whenever multiple scripts read
and/or write data variables concurrently. These problems are
known from distributed systems and can be solved with stan-
dard techniques, such as critical section commands or sema-
phores.

Script conflicts are caused by task dependencies. Two
types of dependencies are possible: (i) a set of tasks has to be
executed sequentially, or (ii) a set of tasks is incompatible
and at least one script has to be aborted. An example of the
former are scripts that handle entering and leaving work

pieces. Scripts initiated by the operator that override current
actions are examples of the latter.

Task dependencies must be declared by the programmer
on the script level, i.e., scripts get into conflict either always
or never. At run time, script conflicts may then be avoided if
the set of active scripts is kept free of conflicting scripts.
Since the empty set of active scripts is always conflict-free,
it is sufficient to make the set conflict-free after a new script
has become active. The sequential ordering of scripts, re-
spectively the choice of the script to be aborted may be de-
clared a priori or computed at run time.

In summary, data conflicts are avoided through declaring
mutual exclusion within script bodies, whereas script con-
flicts are avoided by specifying script relations.

3.3 Computational Model

The final step of the agent programming is to map the con-
current execution of tasks onto a single-processor machine.
For this, it is necessary to bring the tasks into a (possibly in-
terleaved) computational sequence, i.e., scripts must be
scheduled. Moreover, the scheduling has to be applied across
all modules because the behavior of an agent is determined
by its handling of events within several modules. For
instance, after its creation a sensor signal is first interpreted
and classified by a script in the sensor interpretation module
(cf. fig. 1). This script creates a corresponding event that trig-
gers a script in the reasoning module. Depending on its deci-
sion, the event is either handled as a time-critical or a normal
task in the two action modules (or it may even be dropped).

Consequently, the ordering of scripts has to be defined
across all modules which is counter-intuitive to the modular
programming of tasks. In order to resolve this conflict, we
introduce a second view in addition to the modular view of
task programming: event prioritization. Events are assigned
a priority which is passed along with event creation and script
invocation (cf. fig. 4). External events who initiate script ac-
tivation are assigned a pre-defined priority. The priority of
internal events is determined dynamically by the script creat-
ing the event, while subscripts inherit the priority of the call-
ing script.

Figure 4: Priority assignment.
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An example of a priority scheme is the following list of
classes (listed with decreasing priority):



time-critical: Events that must be handled within a
certain time-frame. The fast handling of these event
guarantees the reactiveness of the agent.

task-oriented:Events that accomplish the normal op-
eration of the agent (usually the actual control tasks)
and that are not time-critical.

optional: Events that provide additional functional-
ities like monitoring or diagnosis.

The execution of scripts is then performed according to
the following rules:

1. Classes are executed strictly in sequential order: First all
scripts of class time-critical, then all scripts of class task-
oriented, and finally all optional scripts are executed.

2. Between modules scheduling is done with a fair strategy
(e.g., through round-robin).

3. Within a module the scheduling can be according to any
appropriate strategy (round-robin, FIFO, LIFO, etc.).

It is possible to add more classes to the priority scheme.
In some applications, for example, it is appropriate to distin-
guish between time-critical events that endanger the safety of
the system and time-critical events that decrease the system’s
performance.

The computational architecture described above is much
simpler than the functional architecture of an agent (cf. fig.
1). The computational architecture still consists of the basic
modules, but in addition only requires an event control and
a script execution module, as depicted in figure 5.

All  events (internal or external) are sent to the event con-
trol. According to the rules described above it decides which
script is to be executed next and hands this script to the script
execution. This module either returns control to the event

control because a script is finished or because it creates an in-
ternal event, or it is interrupted by an external event.

With the computational architecture we have described
how task programs can be mapped onto a single-processor
machine and have thus completed the specification of a con-
trol agent. The resulting specification can now be executed
on a comparatively simpler architecture.

3.4 Evaluation

The programming method presented in this section em-
ploys concepts and techniques from modular programming
and distributed systems. These techniques are combined in a
specific approach to agent-oriented programming of
manufacturing control tasks in order to meet the industrial re-
quirements on the functionality of the control system and the
software development process.

First, the programming approach meets the functional re-
quirements stated in subsection 2.1. A typical functional
agent architecture for manufacturing control requires mod-
ules for physical control (sensing and acting) and for agent
interaction, but does not explicitly model the agent’s mental
attitudes or the mental attitudes of other agents (requirement
I). The decision making of the agent may evaluate its own be-
havior or requests for cooperation with respect to its own
goals, but it does so without considering the attitudes of other
agents.

This conception of an agent architecture is supported by
script programming approach. In particular, scripts allow to
efficiently implement routine-based behavior that is both ef-
ficient and timely (requirement II). Configurability or self-
adaptiveness, on the other hand, are not explicitly supported
by the approach. To provide such functionality, the approach
has to be extended in the future.

Second, the programming method also meets the soft-
ware-engineering requirements stated in subsection 2.2.
Scripts and variables are encapsulated in modules and have

Figure 5: Computational architecture.
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only limited access to variables and scripts in other modules
(requirement III).

The programming method also provides a clear and com-
plete semantics (requirement IV). The access of other vari-
ables and scripts is explicitly defined in the module hierar-
chy. The flow of control as well as the sequence of execution
(of tasks) is specified by the script invocation associated with
the priority assignment and the execution rules of the com-
putational model. Finally, the declaration of data and tasks
dependencies enables the programmer to avoid conflicts of
tasks at run-time. All these aspects are explicitly specified
and thus provide a clear and complete semantics of the
agent’s behavior.

Last but not least, the programming method proposed
guides the programmer through the design process for an
agent (requirement V). It starts with the tasks to be performed
and derives scripts and modules for their execution. The
scripts are then synchronized in order to avoid run-time con-
flicts. And finally, the execution of scripts is explicitly se-
quentialized on a single processor.

4 Related Work

So far, only few work has been concerned with agent-ori-
ented analysis, design, or programming.

Burmeister [4] reviews object-oriented methodologies
for analysis and design, and concludes that they are not ade-
quate for the development of agent-oriented systems. First of
all, the internal architecture as well as the interaction of
agents is more structured than that of objects. And second,
agents may decide autonomously whether or not to execute
a request by another agent. Burmeister therefore proposes a
methodology for analyzing and designing an agent system.
This methodology describes how to identify the agents and
their relationships, but does not explain how to program each
agent.

Collinot et al. [8] proposed a methodology for specifying
collective behaviors, like soccer playing. Elementary behav-
iors of agents are coordinated and organized in order to create
the expected group behavior. This contrasts the approach of
this paper that derives individual behaviors from the overall
strategies. Furthermore, the methodology does not describe
how the individual behaviors are implemented and how un-
desirable conflicts between elementary behaviors are
avoided (only positive influences are considered).

Kinny et al. [15] proposed a methodology for designing
BDI agents. The methodology allows to define the possible
beliefs and plans of an agent. The plans are then executed on
a BDI architecture, like the procedural reasoning system
[11]. The methodology proposed by Kinny et al., however,
does not support modularization. Nor does it explicitly spec-
ify  in a transparent form how the plans are sequentialized on

a single processor. For complex agents, the resulting behav-
ior of the agent is therefore difficult to predict.

Braziet et al. [3] have developed a formal specification
framework for complex reasoning systems that was applied
to network management. The framework allows to specify
primitive and complex tasks of a component and to define the
interaction along information links. Task representation,
however, is knowledge-based (cf. e.g. [9]) and is thus not ap-
propriate for the domain considered in this paper where the
overall manufacturing task is decomposed into operational
strategies and routines.

A framework for agent-oriented programming was first
proposed by Shoham [19]. In his approach, the state of agents
is represented with the help of mental categories, such as be-
liefs, obligations, and capabilities. The states are changed by
communication, actions, and commitment rules. Thomas
[20] extended this framework by planning abilities that sup-
port the mental reasoning of an agent. For manufacturing
control, however, both approaches are not appropriate be-
cause mental categories are inadequate primitives for ex-
pressing most control tasks (cf. section 2). AgentSpeak, on
the other hand, is plan-oriented and thus more suitable for
programming tasks [21]. However, the language does not
provide mechanisms for modular agent design or execution
control (except for plan priorities).

A lot of work has been done on agent architectures (see
[16,22] for an overview). Even though many of these archi-
tectures include routine-based capabilities, hardly any archi-
tecture supports modular programming and execution con-
trol as described in this paper.

5 Conclusion

This paper presented a programming method for design-
ing manufacturing control agents. Starting from a specifica-
tion of the control tasks an agent has to perform, a program
that exhibits the requested control behavior is derived in
three steps: (i) for each task, a set of scripts is implemented
that accomplishes the task, (ii) conflicting scripts are de-
clared, and (iii) single-thread script execution is specified
through event prioritization.

The programming method presented fulfills the industrial
requirements for manufacturing control. First, semi-auton-
omy and routine-based behavior provide the appropriate
agent model. Second, the programming method meets the
software-engineering requirement. Programming is modu-
lar, extensible, and transparent to the programmer.

The programming method thus accomplishes one step in
the development of an agent-oriented manufacturing control
system. First, the overall control task is analyzed and a vision
of the required control behavior is developed. The overall
control behavior is then decomposed into strategies and indi-
vidual control tasks. These control tasks are finally imple-



mented with the help of the programming method presented.
Future work will be to extend the method to a framework that
includes all analysis, design, and programming steps neces-
sary to develop manufacturing control systems. Eventually,
the resulting methodology will also include concepts for test-
ing and diagnosing such systems.
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